Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 1, 2026
-
Free, publicly-accessible full text available May 1, 2026
-
We study the cooperative asynchronous multi-agent multi-armed bandits problem, where each agent's active (arm pulling) decision rounds are asynchronous. That is, in each round, only a subset of agents is active to pull arms, and this subset is unknown and time-varying. We consider two models of multi-agent cooperation, fully distributed and leader-coordinated, and propose algorithms for both models that attain near-optimal regret and communications bounds, both of which are almost as good as their synchronous counterparts. The fully distributed algorithm relies on a novel communication policy consisting of accuracy adaptive and on-demand components, and successive arm elimination for decision-making. For leader-coordinated algorithms, a single leader explores arms and recommends them to other agents (followers) to exploit. As agents' active rounds are unknown, a competent leader must be chosen dynamically. We propose a variant of the Tsallis-INF algorithm with low switches to choose such a leader sequence. Lastly, we report numerical simulations of our new asynchronous algorithms with other known baselines.more » « lessFree, publicly-accessible full text available March 6, 2026
-
Free, publicly-accessible full text available February 10, 2026
-
Free, publicly-accessible full text available June 9, 2026
-
Reducing tail latency has become a crucial issue for optimizing the performance of online cloud services and distributed applications. In distributed applications, there are many causes of high end-to-end tail latency, including operating system delays, request re-ordering due to fan-out/fanin, and network congestion. Although recent research has focused on reducing tail latency for individual application components, such as by replicating requests and scheduling, in this paper, we argue for a holistic approach for reducing the end-to-end tail latency across application components. We propose TailClipper, a distributed scheduler that tags each arriving request with an arrival timestamp, and propagates it across the microservices' call chain. TailClipper then uses arrival timestamps to implement an oldest request first scheduler that combines global first-come first serve with a limited form of processor sharing to reduce end-to-end tail latency. In doing so, TailClipper can counter the performance degradation caused by request reordering in multi-tiered and microservices-based applications. We implement TailClipper as a userspace Linux scheduler and evaluate it using cloud workload traces and a real-world microservices application. Compared to state-of-the-art schedulers, our experiments reveal that TailClipper improves the 99th percentile response time by up to 81%, while also improving the mean response time and the system throughput by up to 54% and 29% respectively under high loads.more » « less
-
Quantum repeaters are necessary to fully realize the capabilities of the emerging quantum internet, especially applications involving distributing entanglement across long distances. A more general notion of this can be called a quantum switch, which connects to many users and can act as a repeater to create end-to-end entanglement between different subsets of these users. Here we present a method of calculating the capacity region of both discrete- and continuous-variable quantum switches that in general support mixed-partite entanglement generation. The method uses tools from convex analysis to generate the boundaries of the capacity region. We show example calculations with illustrative topologies and perform simulations to support the analytical results.more » « less
-
Many IoT applications have increasingly adopted machine learning (ML) techniques, such as classification and detection, to enhance automation and decision-making processes. With advances in hardware accelerators such as Nvidia’s Jetson embedded GPUs, the computational capabilities of end devices, particularly for ML inference workloads, have significantly improved in recent years. These advances have opened opportunities for distributing computation across the edge network, enabling optimal resource utilization and reducing request latency. Previous research has demonstrated promising results in collaborative inference, where processing units in the edge network, such as end devices and edge servers, collaboratively execute an inference request to minimize latency.This paper explores approaches for implementing collaborative inference on a single model in resource-constrained edge networks, including on-device, device-edge, and edge-edge collaboration. We present preliminary results from proof-of-concept experiments to support each case. We discuss dynamic factors that can impact the performance of these inference execution strategies, such as network variability, thermal constraints, and workload fluctuations. Finally, we outline potential directions for future research.more » « less
-
Errors are the fundamental barrier to the development of quantum systems. Quantum networks are complex systems formed by the interconnection of multiple components and suffer from error accumulation. Characterizing errors introduced by quantum network components becomes a fundamental task to overcome their depleting effects in quantum communication. Quantum Network Tomography (QNT) addresses end-to-end characterization of link errors in quantum networks. It is a tool for building error-aware applications, network management, and system validation. We provide an overview of QNT and its initial results for characterizing quantum star networks. We apply a previously defined QNT protocol for estimating bit-flip channels to estimate depolarizing channels. We analyze the performance of our estimators numerically by assessing the Quantum Cramèr-Rao Bound (QCRB) and the Mean Square Error (MSE) in the finite sample regime. Finally, we provide a discussion on current challenges in the field of QNT and elicit exciting research directions for future investigation.more » « less
An official website of the United States government
